Artificial Intelligence for the Electron Ion Collider

Artificial Intelligence for the Electron Ion ColliderArtificial Intelligence for the Electron Ion ColliderArtificial Intelligence for the Electron Ion Collider
  • Home
  • Events
  • Workshops
  • Hackathons
  • AI-ML-References
  • How-to-Join
  • Community
  • More
    • Home
    • Events
    • Workshops
    • Hackathons
    • AI-ML-References
    • How-to-Join
    • Community
  • Sign In
  • Create Account

  • My Account
  • Signed in as:

  • filler@godaddy.com


  • My Account
  • Sign out

Artificial Intelligence for the Electron Ion Collider

Artificial Intelligence for the Electron Ion ColliderArtificial Intelligence for the Electron Ion ColliderArtificial Intelligence for the Electron Ion Collider

Signed in as:

filler@godaddy.com

  • Home
  • Events
  • Workshops
  • Hackathons
  • AI-ML-References
  • How-to-Join
  • Community

Account


  • My Account
  • Sign out


  • Sign In
  • My Account

COLLECTION OF PAPERS

AI/ML applications for the EIC

R. Kelleher, A. Vossen

JINST

Normalizing flows for domain adaptation when identifying Λ hyperon events (AI4EIC proceeding, JINST 19 C06020)

G. Matousek, A. Vossen

JINST

Photon classification with Gradient Boosted Trees at CLAS12 (AI4EIC proceeding, JINST 19 C06006)

S. Gardner, R. Tyson, D. Glazier and K. Livingston

JINST

Object condensation for track building in a backward electron tagger at the EIC  (AI4EIC proceeding, JINST 19 C05052)

G. Gavalian on behalf of the CLAS12 Collaboration

JINST

Real-time charged track reconstruction for CLAS12  (AI4EIC proceeding, JINST 19 C05050)

J. Craft et al

JINST

Performance optimization for a scintillating glass electromagnetic calorimeter at the EIC (AI4EIC proceeding, JINST 19 C05049)

K. Suresh et al

JINST

Towards a RAG-based Summarization Agent for the Electron-Ion Collider (AI4EIC proceeding, to appear on JINST, 2024)

C. Fanelli et al

JINST

Physics Event Classification Using Large Language Models (AI4EIC proceeding, to appear on JINST, 2024)

M. Diefenthaler et al

JINST

AI-Assisted Detector Design for the EIC (AID(2)E)  (AI4EIC proceeding, to appear on JINST, 2024)

T. Jeske et al.

JINST

Hydra: Computer Vision for Data Quality Monitoring  (AI4EIC proceeding, to appear on JINST, 2024)

D. Lawrence et al.

JINST

ML-based Calibration and Control of the GlueX Central Drift Chamber  (AI4EIC proceeding, to appear on JINST, 2024)

M. Karwowska et al.

JINST

Particle identification with machine learning from incomplete data in the ALICE experiment  (AI4EIC proceeding, to appear on JINST, 2024)

M. Kilpatrick et al

JINST

Beam Condition Forecasting with Non-destructive Measurements at FACET-II  (AI4EIC proceeding, to appear on JINST, 2024)

C. Fanelli, J. Giroux

cs.LG

ELUQuant: Event-Level Uncertainty Quantification in Deep Inelastic Scattering The paper introduces a physics-informed Bayesian Neural Network with flow approximated posteriors using multiplicative normalizing flows for detailed uncertainty quantification at the physics event-level. The method is capable of identifying both heteroskedastic aleatoric and epistemic uncertainties and is applied to Deep Inelastic Scattering events to extract the kinematics (NeurIPS paper, arXiv:2310.02913)

C. Allaire et al 2023 arXiv:2307.08593

cs.AI

Artificial Intelligence for the Electron Ion Collider (AI4EIC) This paper summarizes the different activities and R&D projects covered across the sessions of the 2nd AI4EIC workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community. (arXiv:2307.08593)


K. Lee, J. Mulligan, M. Płoskoń, F. Ringer, F. Yuan arXiv:2210.06450v1

hep-ph

Machine learning-based jet and event classification at the Electron-Ion Collider with applications to hadron structure and spin physics  (arXiv:2210.06450)


T. Xuan, F. Durao and Y. Sun, 2022 JINST 17 C07003

JINST

High performance FPGA embedded system for machine learning based tracking and trigger in sPhenix and EIC  (link to JINST 17 C07003)

AI4EIC proceeding, Sep 2021

S. Furletov et al 2022 JINST 17 C06009

JINST

Machine learning on FPGA for event selection  (link to JINST 17 C06009)

AI4EIC proceeding, Sep 2021

T.S. Humble et al 2022 JINST 17 C03037

JINST

Frontiers in computing for artificial intelligence  (link to JINST 17 C03037)

AI4EIC proceeding, Sep 2021

C. Fanelli et al (ECCE consortium) (2022)

physics.ins-det

AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider (link to arXiv:2205.09185 [physics.ins-det])

Jefferson Lab Angular Momentum (JAM) (2022)

JHEP

New tool for kinematic regime estimation in semi-inclusive deep-inelastic scattering (link to 2201.12197 [hep-ph])

JHEP 04 (2022) 084 DOI: 10.1007/JHEP04(2022)084

M. Arratia, D. Britzger, O. Long, B. Nachman (2022)

NIM-A

Reconstructing the Kinematics of Deep Inelastic Scattering with Deep Learning (link to arXiv:2110.05505)

NIM-A 1025 (2022) 166164, 10.1016/j.nima.2021.166164

C. Fanelli, A. Mahmood JINST 17 C07011 (2022)

JINST

Artificial Intelligence for Imaging Cherenkov Detectors at the EIC (link to arXiv:2204.08645,; link to JINST 17 C07011)

AI4EIC proceeding, Sep 2021

T. Jeske et al., JINST 17 C03043 (2022)

JINST

AI for Experimental Controls at Jefferson Lab, (link to 2022_JINST_17_C03043)

AI4EIC proceeding, Sep 2021

L.-G. Gagnon JINST 17 C02026 (2022)

JINST

Machine learning for track reconstruction at the LHC (link to 2022 JINST 17 C02026)

AI4EIC proceeding, Sep 2021

D. Higinbotham JINST 17 C02018 (2022)

physics.ins-det

EIC Detector Overview (link to 2022 JINST 17 C02018, arXiv:2202.13970)

AI4EIC proceeding, Sep 2021

C. Fanelli arXiv:2203.04530v2 (2022)

physics.ins-det

 Design of Detectors at the Electron Ion Collider with Artificial Intelligence (link to arXiv:2203.04530v2)

AI4EIC proceeding, Sep 2021

L. Anderlini arXiv:2110.07925 (2021)

HEP-Ex

Machine Learning for the LHCb Simulation (link to arXiv:2110.07925

AI4EIC proceeding, Sep 2021

T. Britton and B. Nachman JINST 17 C02022 (2022)

JINST

Accelerator and detector control for the EIC with machine learning (link to 2022 JINST 17 C02022)

AI4EIC proceeding, Sep 2021

M. Diefenthaler, A. Farhat, A. Verbytskyi, Y. Xu, arXiv:2108.11638 (2021)

HEP-PH

Deeply Learning Deep Inelastic Scattering Kinematics (link to arXiv:2108.11638v2)

J. Arrington et al., J.Phys.G 48 (2021)7, 075106

HEP-PH, NUCL-TH

Revealing the structure of light pseudoscalar mesons at the electron–ion collider (link to arXiv:2102.11788v1, paper)

E. Cisbani, A. Del Dotto, C. Fanelli, M. Williams, et al, JINST 15.05(2020)

physics.ins-det, cs.LG, hep-ex

AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case (link to arXiv, paper)

C. Fanelli, J. Pomponi, Mach. Learn.: Sci. Technol. (2020): 015010

physics.DATA-AN

DeepRICH: learning deeply Cherenkov detectors (link to arXiv:1911.11717, paper)

Alanazi, Y. et al, arXiv:2008.03151v1 [hep-ph] JLAB-THY-20-3230 (2020)

HEP-PH, HEP-EX, NUCL-TH

AI-based Monte Carlo event generator for electron-proton scattering, Alanazi, Y. et al., (link to arXiv:2008.03151v1 [hep-ph])

Khalek, R. A., Jacob J. E., and Rojo J. , Eur. Phys. J. C 79.6 (2019) 1-35

HEP-PH, HEP-EX, NUCL-TH

Nuclear Parton Distributions from Lepton-Nucleus Scattering and the Impact of an Electron-Ion Collider (link to arXiv 1904.00018, EPJ C)

In progress (contact: support@eic.ai)

Copyright © 2021 Artificial Intelligence for the Electron Ion Collider - All Rights Reserved.

ai4eic

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept